Matura Maj 2018, Poziom Podstawowy (Arkusze CKE), Formuła od 2005 - Zadanie 14. (1 pkt) Przeprowadzono doświadczenie zgodnie z poniższym rysunkiem. Podczas doświadczenia w kolbie przebiegła reakcja chemiczna zilustrowana równaniem. Po zakończeniu opisanego doświadczenia, w którym magnez przereagował całkowicie, z roztworu otrzymanego
http://matfiz24.plNarysuj wykres funkcji określony wzorem i zobacz wszystkie podpunkty jakie były do zrobienia w tym zadaniu maturalnym online :)
Filmik, w którym rozwiązuję trzy zadania, które pojawiły się na maturze dwujęzycznej z matematyki na poziomie podstawowym- zadania w języku angielskim. Źródł
Matura z informatyki. W katalogach oznaczonych rokiem są rozwiązania matur praktycznch (*.xlsx). W podfolderach CKE informatyka jest arkusz maturalny razem z sposobem oceniania (N) i danymi do zadań. 2016 2017. Zadania praktyczne najlepiej rozwiązywać w Excelu lub poprzez zapytania do bazy danych. Pisanie aplikacji w C++ już nie ma sensu
Zadanie 20 - Matura 2019 maj matematyka podstawa czyli dane są punkty o współrzędnych A=(-2,5) oraz B=(4,-1). Średnica okręgu wpisanego w kwadrat o boku AB j
0:06 Sposób 16:45 Sposób 2Dany jest trójkąt równoramienny ABC, w którym AC=BC. Na ramieniu AC tego trójkąta wybrano punkt M (M≠A i M≠C), a na ramieniu
WmcurdD. Matura 2018: Matematyka (ODPOWIEDZI, ROZWIĄZANIA, ARKUSZE CKE) CKEMatura 2018: matematyka. ODPOWIEDZI, ARKUSZE CKE, ROZWIĄZANIA Matura z matematyki 2018 już się skończyła. U nas najszybciej znajdziesz arkusze, rozwiązania zadań i odpowiedzi. Co było na maturze z matematyki?Matura 2018: Matematyka arkusze CKE. Jakie pytania z matematyki? [ARKUSZE CKE, ODPOWIEDZI, ROZWIĄZANIA] Matura 2018 z matematyki (odpowiedzi, pytania, rozwiązania, arkusze CKE) Tutaj znajdziesz arkusz CKE: Matura 2018: Matematyka - arkusz CKE online [Odpowiedzi, rozwiązania, zadania online] Matura z matematyki 2018 online7 maja, o godz. 9, maturzyści rozpoczęli egzamin maturalny z matematyki. Można zdawać egzamin na poziomie podstawowym, a także jako przedmiot dodatkowy, na poziomie rozszerzonym. Natomiast o godz. 14 zaplanowano język łaciński i kulturę antyczną na poziomie podstawowym i rozszerzonym. Matura CKE MATEMATYKA: Jakie pytania, odpowiedzi, rozwiązania [ARKUSZE CKE MATEMATYKA 2018]Gdzie szukać odpowiedzi z matematyki: Matura 2018: Matematyka arkusze CKE. Jakie pytania z matematyki? [ARKUSZE CKE, ODPOWIEDZI, ROZWIĄZANIA]Aktualizacja 14:15 - CKE opublikowało już arkusze egzaminacyjne - maturę z matematyki 2018 z dnia 7 maja. Można je znaleźć na oficjalnej stronie Centralnej Komisji Egzaminacyjnej, są jednak dostępne również na naszej stronie! Kliknij w zdjęcie główne i zobacz, jak Ci poszło w poszczególnych zadaniach. Już niedługo w naszych serwisach dostępne będą odpowiedzi i rozwiązania z matury 2018 z 2018 Matematyka podstawowa nowa formuła (Odpowiedzi, Rozwiązania)Zadanie 1: B Zadanie 2: C Zadanie 3: C Zadanie 4: C Zadanie 5: A Zadanie 6: C Zadanie 7: D Zadanie 8: D Zadanie 9: C Zadanie 10: D Zadanie 11: A Zadanie 12: A Zadanie 13: B Zadanie 14: C Zadanie 15: A Zadanie 16: A Zadanie 17: B Zadanie 18: B Zadanie 19: B Zadanie 20: D Zadanie 21: A Zadanie 22: A Zadanie 23: B Zadanie 24: D Zadanie 25: D Matura 2018: matematyka. Przecieki z matematyki na maturze 2018Matura 2018 Matematyka podstawowa: Odpowiedzi i RozwiązaniaMatura 2018 - matematyka poziom podstawowy. Arkusz egzaminacyjny składa się z trzech grup grupa to zadania zamknięte. Do każdego z zadań są cztery odpowiedzi i tylko jedna jest poprawna. Każde z zadań jest punktowane w skali 0–1. Należy zaznaczyć właściwą II grupa to zadania otwarte krótkiej odpowiedzi. Należy przedstawić krótkie uzasadnienie swojej odpowiedzi. Tu otrzymuje się punkty od 0 do 2. III grupa to zadania otwarte rozszerzonej odpowiedzi. Tutaj trzeba starannie zaplanować rozwiązanie oraz przedstawić sposób swojego rozumowania. Te zadania punktowane w skali 0–4, 0–5 lub 0–6. Matura 2018 z matematyki. W tym artykule znajdziecie odpowiedzi, arkusz CKE i rozwiązania zadań z matematyki na poziomie podstawowym. Opublikujemy je, gdy tylko podzieli się nimi Centralna Komisja tak wyglądały arkusze zadań z matury z matematyki z poprzednich lat:Matura 2018 MATEMATYKA: podstawowa Odpowiedzi, Zadania, Rozwiązania, Arkusz CKE [MATURA 2018 MATEMATYKA]Matura: MATEMATYKA 2018 podstawowa Odpowiedzi, Zadania, Rozwiązania, Arkusz CKE [MATURA 2018 MATEMATYKA]
5 maja, 2022 8 czerwca, 2022 Zadanie 9 (0-1) Na rysunku przedstawiono wykres funkcji f. Iloczyn f(−3) ⋅ f(0) ⋅ f(4) jest równy A. (-12) B. (-8) C. 0 D. 16 Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj ( poziom podstawowy Analiza: W najbliższym czasie pojawią się zadania i odpowiedzi. Odpowiedź: A. (-12) B. (-8) C. 0 D. 16 Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Kategoria: Budowa i funkcje komórki Enzymy Układ immunologiczny Typ: Zamknięte (np. testowe, prawda/fałsz) Podaj i uzasadnij/wyjaśnij Kwas foliowy (witamina z grupy B) jest niezbędny przy podziale komórkowym i dlatego odgrywa szczególną rolę w tkankach, w których podziały komórkowe są intensywne. Pełni on funkcję koenzymu w reakcjach przenoszenia grup jednowęglowych w procesie syntezy zasad purynowych i pirymidynowych. Podczas tych reakcji kwas foliowy ulega utlenieniu, a regenerowanie polega na ponownej jego redukcji. Antagonistą kwasu foliowego jest metotreksat (MTX). Wiąże się on z centrum aktywnym enzymu odpowiedzialnego za reakcję redukcji kwasu foliowego 10 000 razy silniej niż naturalny substrat. Metotreksat działa swoiście na dzielące się komórki, głównie w fazie S cyklu komórkowego, i dlatego jest stosowany w leczeniu wielu chorób nowotworowych. Ubocznym skutkiem opisanej chemioterapii okazuje się wpływ leku na inne prawidłowo dzielące się komórki organizmu, np. na niewyspecjalizowane komórki szpiku kostnego. Na podstawie: J. Berg, J. Tymoczko, L. Stryer, Biochemia, Warszawa 2009. (0–1) Zaznacz właściwe dokończenie zdania wybrane spośród A–B oraz jego poprawne uzasadnienie wybrane spośród 1.–3. Po podaniu MTX zachodzi inhibicja A. kompetycyjna, ponieważ 1. metotreksat, podobnie jak kwas foliowy, pełni funkcję koenzymu w reakcjach redukcji grup jednowęglowych. 2. metotreksat wiąże się z centrum aktywnym enzymu odpowiedzialnego za reakcję redukcji kwasu foliowego. B. niekompetycyjna, 3. metotreksat zmienia kształt centrum aktywnego enzymu katalizującego redukcję kwasu foliowego, co jest przyczyną wypierania cząsteczek tego kwasu. (0–1) Określ, czy podczas leczenia pacjenta chemioterapią, z wykorzystaniem dużych dawek MTX, można odwrócić inhibicję reakcji redukcji kwasu foliowego za pomocą wysokiej dawki tego kwasu. Odpowiedź uzasadnij, odwołując się do właściwości metotreksatu. (0–1) Wyjaśnij, dlaczego metotreksat jest najbardziej toksyczny dla dzielących się komórek w fazie S cyklu komórkowego. W odpowiedzi uwzględnij rolę kwasu foliowego w procesie zachodzącym w tej fazie. (0–1) Podaj, dlaczego jednym ze skutków ubocznych stosowania małych dawek metotreksatu jest zahamowanie wytwarzania przeciwciał w organizmie. W odpowiedzi odnieś się do komórek układu odpornościowego. Rozwiązanie (0–1) Schemat punktowania 1 p. – za zaznaczenie właściwego dokończenia zdania i poprawnego jego uzasadnienia. 0 p. – za każdą inną odpowiedź lub za brak odpowiedzi. Rozwiązanie A2. (0–1) Schemat punktowania 1 p. – za poprawne określenie, że podczas leczenia pacjenta chemioterapią niemożliwe jest odwrócenie efektu inhibicji opisanego enzymu, odwołujące się do bardzo silnego powinowactwa MTX do centrum aktywnego. 0 p. – za odpowiedź niespełniającą powyższych wymagań lub za brak odpowiedzi. Przykładowe rozwiązania Nie, ponieważ MTX łączy się z centrum aktywnym 10 000 razy silniej niż kwas foliowy. Nie można, ponieważ niemożliwe jest osiągnięcie w komórce na tyle wysokich stężeń kwasu foliowego, aby skutecznie współzawodniczył o miejsce aktywne enzymu z MTX, który ma do niego 10 tys. razy większe powinowactwo. Inhibicja opisanego enzymu przez MTX jest praktycznie nieodwracalna, ponieważ MTX ma silne powinowactwo do centrum aktywnego enzymu. Odwrócenie inhibicji wymagałoby niemożliwego do osiągnięcia w organizmie, znacznego zwiększenia stężenia utlenionej formy kwasu foliowego. Chociaż ten typ inhibicji jest odwracalny, to ze względu na bardzo silne powinowactwo MTX do centrum aktywnego enzymu inhibicja tej konkretnej reakcji nie może być zniesiona w organizmie pacjenta. Uwaga: Nie uznaje się odpowiedzi, w których zdający wykazuje niezrozumienie mechanizmu inhibicji kompetycyjnej, np. „Nawet duża dawka kwasu foliowego nie zdoła odłączyć MTX od centrum aktywnego enzymu”. (0–1) Schemat punktowania 1 p. – za poprawne wyjaśnienie, uwzględniające blokowanie redukcji kwasu foliowego przez metotreksat, skutkujące niedoborem zasad azotowych niezbędnych do syntezy DNA. 0 p. – za odpowiedź niespełniającą powyższych wymagań lub za brak odpowiedzi. Przykładowe rozwiązania W fazie S zachodzi replikacja DNA, do której potrzebne są zasady purynowe i pirymidynowe, a ich synteza zachodzi przy udziale kwasu foliowego. Zablokowanie redukcji kwasu foliowego skutkuje niedoborem zasad azotowych i niezachodzeniem replikacji. Metotreksat, blokując redukcję kwasu foliowego, hamuje syntezę zasad azotowych, potrzebnych do syntezy DNA, co skutkuje zatrzymaniem podziałów komórkowych. Uwaga: Uznaje się odpowiedzi zawierające odniesienie do syntezy zasad azotowych w fazie S. Zasady azotowe są głównie wytwarzane w późnej fazie G1, ale ich synteza zachodzi również na innych etapach cyklu komórkowego. (0–1) Schemat punktowania 1 p. – za podanie przyczyny zahamowania wytwarzania przeciwciał pod wpływem metotreksatu, uwzględniającej hamowanie podziałów linii komórek produkujących przeciwciała. 0 p. – za odpowiedź niespełniającą powyższych wymagań lub za brak odpowiedzi. Przykładowe rozwiązania Metotreksat powoduje zahamowanie podziałów komórkowych limfocytów B, syntetyzujących przeciwciała. Małe dawki MTX hamują podział komórek szpiku kostnego, z których powstają komórki układu odpornościowego produkujące przeciwciała. MTX hamuje podziały komórek, przez co powstaje mniej plazmocytów. Ponieważ następuje zahamowanie podziałów macierzystych komórek limfocytów B w szpiku kostnym. Uwaga: Nie uznaje się odpowiedzi zbyt ogólnych, np. „Małe dawki MTX hamują podział komórek układu odpornościowego”.
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Liczba \(2\log_36-\log_34\) jest równa A.\( \log_38 \) B.\( 2\log_32 \) C.\( 4 \) D.\( 2 \) DLiczba \(\sqrt[3]{\frac{7}{3}}\cdot \sqrt[3]{\frac{81}{56}}\) jest równa A.\( \frac{3}{2} \) B.\( \frac{9}{4} \) C.\( \frac{\sqrt{3}}{2} \) D.\( \frac{3}{2\sqrt[3]{21}} \) ADane są liczby \(a=3{,}6\cdot 10^{-12}\) oraz \(b=2{,}4\cdot 10^{-20}\). Wtedy iloraz \(\frac{a}{b}\) jest równy A.\( 8{,}64\cdot 10^{-32} \) B.\( 8{,}64\cdot 10^{32} \) C.\( 1{,}5\cdot 10^{-8} \) D.\( 1{,}5\cdot 10^{8} \) DCena roweru po obniżce o \(15\%\) była równa \(850\) zł. Przed obniżką ten rower kosztował A.\( 1000,00 \) zł B.\( 977,50 \) zł C.\( 865,00 \) zł D.\( 850,15 \) zł AZbiorem wszystkich rozwiązań nierówności \(\frac{1-2x}{2}\gt \frac{1}{3}\) jest przedział A.\( \Biggl( \frac{1}{6}, +\infty \Biggl) \) B.\( \Biggl( \frac{2}{3}, +\infty \Biggl) \) C.\( \Biggl( -\infty ,\frac{1}{6} \Biggl) \) D.\( \Biggl( -\infty ,\frac{2}{3} \Biggl) \) CFunkcja kwadratowa jest określona wzorem \(f(x) = -2(x+3)(x-5)\). Liczby \(x_1\), \(x_2\) są różnymi miejscami zerowymi funkcji \(f\). Zatem A.\( x_1 + x_2 = -8 \) B.\( x_1 + x_2 = 8 \) C.\( x_1 + x_2 = -2\) D.\( x_1 + x_2 = 2 \) DRównanie \(\frac{x^2 + 2x}{x^2 - 4} = 0\) dwa rozwiązania: \(x = 0, x = -2\) jedno rozwiązanie: \( x = 0 \) dwa rozwiązania: \( x = -2, x = 2 \) trzy rozwiązania: \( x = -2, x = 0, x = 2 \) BFunkcja liniowa \(f\) określona jest wzorem \(f(x) = \frac{1}{3}x - 1\), dla wszystkich liczb rzeczywistych \(x\). Wskaż zdanie prawdziwe. \(f\) jest rosnąca i jej wykres przecina oś \(Oy\) w punkcie \(P = \Biggl( 0, \frac{1}{3} \Biggl) \). \(f\) jest rosnąca i jej wykres przecina oś \(Oy\) w punkcie \(P = ( 0, -1) \). \(f\) jest malejąca i jej wykres przecina oś \(Oy\) w punkcie \(P = \Biggl( 0, \frac{1}{3} \Biggl) \). \(f\) jest malejąca i jej wykres przecina oś \(Oy\) w punkcie \(P = ( 0, -1) \). BWykresem funkcji kwadratowej \(f(x) = x^2 - 6x - 3\) jest parabola, której wierzchołkiem jest punkt o współrzędnych A.\( (-6, 69) \) B.\( (-6, -3) \) C.\( (6, -3) \) D.\( (3, -12) \) DLiczba \(1\) jest miejscem zerowym funkcji liniowej \(f(x) = ax + b\), a punkt \(M = (3, -2)\) należy do wykresu tej funkcji. Współczynnik \(a\) we wzorze tej funkcji jest równy A.\( 1 \) B.\( \frac{3}{2} \) C.\( -\frac{3}{2} \) D.\( -1 \) DDany jest ciąg \((a_n)\) określony wzorem \(a_n = \frac{5 - 2n}{6}\) dla \(n\ge 1\). Ciąg ten jest i jego różnica jest równa \( r = -\frac{1}{3} \). i jego różnica jest równa \( r = -2 \). i jego iloraz jest równy \( q = -\frac{1}{3} \). i jego iloraz jest równy \( q = \frac{5}{6} \). ADla ciągu arytmetycznego \((a_n)\), określonego dla \(n\ge1\), jest spełniony warunek \(a_4 + a_5 + a_6 = 12\). Wtedy A.\( a_5 = 4 \) B.\( a_5 = 3 \) C.\( a_5 = 6 \) D.\( a_5 = 5 \) ADany jest ciąg geometryczny \((a_n)\), określony dla \(n\ge1\), w którym \(a_1 = \sqrt{2}\), \(a_2 = 2\sqrt{2}\), \(a_3 = 4\sqrt{2}\). Wzór na \(n\)-ty wyraz tego ciągu ma postać A.\( a_n = \bigl(\sqrt{2}\bigl)^n \) B.\( a_n = \Biggl(\frac{\sqrt{2}}{2}\Biggl)^n \) C.\( a_n = \frac{2^n}{\sqrt{2}} \) D.\( a_n = \frac{\bigl(\sqrt{2}\bigl)^n}{2} \) CPrzyprostokątna \(LM\) trójkąta prostokątnego \(KLM\) ma długość \(3\), a przeciwprostokątna \(KL\) ma długość \(8\) (zobacz rysunek). Wtedy miara \(α\) kąta ostrego \(LKM\) tego trójkąta spełnia warunek A.\( 27^\circ\lt\alpha\le 30^\circ \) B.\( 24^\circ\lt\alpha\le 27^\circ \) C.\( 21^\circ\lt\alpha\le 24^\circ \) D.\( 18^\circ\lt\alpha\le 21^\circ \) CDany jest trójkąt o bokach długości: \(2\sqrt{5}\), \(3\sqrt{5}\), \(4\sqrt{5}\). Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości A.\( 10, 15, 20 \) B.\( 20, 45, 80 \) C.\( \sqrt{2}, \sqrt{3}, \sqrt{4} \) D.\( \sqrt{5}, 2\sqrt{5}, 3\sqrt{5} \) ADany jest okrąg o środku \(S\). Punkty \(K\), \(L\) i \(M\) leżą na tym okręgu. Na łuku \(KL\) tego okręgu są oparte kąty \(KSL\) i \(KML\) (zobacz rysunek), których miary \(α\) i \(β\) spełniają warunek \(α + β = 111^\circ\). Wynika stąd, że A.\( \alpha = 74^\circ \) B.\( \alpha = 76^\circ \) C.\( \alpha = 70^\circ \) D.\( \alpha = 72^\circ \) ADany jest trapez prostokątny \(KLMN\), którego podstawy mają długości \(|KL| = a\), \(|MN| = b\), \(a\gt b\). Kąt \(KLM\) ma miarę \(60^\circ\). Długość ramienia \(LM\) tego trapezu jest równa A.\( a - b \) B.\( 2(a - b) \) C.\( a + \frac{1}{2}b \) D.\( \frac{a + b}{2} \) BPunkt \(K = (2, 2)\) jest wierzchołkiem trójkąta równoramiennego \(KLM\), w którym \(|KM| = |LM|\). Odcinek \(MN\) jest wysokością trójkąta i \(N = (4, 3).\) Zatem A.\( L = (5, 3) \) B.\( L = (6, 4) \) C.\( L = (3, 5) \) D.\( L = (4, 6) \) BProste o równaniach \(y = (m + 2)x + 3\) oraz \(y = (2m - 1)x - 3\) są równoległe, gdy A.\( m = 2 \) B.\( m = 3 \) C.\( m = 0 \) D.\( m = 1 \) BPodstawą ostrosłupa jest kwadrat \(KLMN\) o boku długości \(4\). Wysokością tego ostrosłupa jest krawędź \(NS\), a jej długość też jest równa \(4\) (zobacz rysunek). Kąt \(α\), jaki tworzą krawędzie \(KS\) i \(MS\), spełnia warunek A.\( \alpha = 45^\circ \) B.\( 45^\circ\lt \alpha \lt 60^\circ \) C.\( \alpha\gt 60^\circ \) D.\( \alpha = 60^\circ \) DPodstawą graniastosłupa prostego jest prostokąt o bokach długości \(3\) i \(4\). Kąt \(α\), jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy \(45^\circ\) (zobacz rysunek). Wysokość graniastosłupa jest równa A.\( 5 \) B.\( 3\sqrt{2} \) C.\( 5\sqrt{2} \) D.\( \frac{5\sqrt{3}}{3} \) ANa rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa \(r\) i jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca. Objętość tej bryły jest równa A.\( \frac{5}{3}\pi r^3 \) B.\( \frac{4}{3}\pi r^3 \) C.\( \frac{2}{3}\pi r^3 \) D.\( \frac{1}{3}\pi r^3 \) AW zestawie \(\underbrace{2,2,2,...,2}_{m \text{ liczb}}, \underbrace{4,4,4,...,4}_{m \text{ liczb}}\) jest \(2m\) liczb \((m\ge1)\), w tym \(m\) liczb \(2\) i \(m\) liczb \(4\). Odchylenie standardowe tego zestawu liczb jest równe A.\( 2 \) B.\( 1 \) C.\( \frac{1}{\sqrt{2}} \) D.\( \sqrt{2} \) BIle jest wszystkich liczb naturalnych czterocyfrowych mniejszych od \(2018\) i podzielnych przez \(5\)? A.\( 402 \) B.\( 403 \) C.\( 203 \) D.\( 204 \) DW pudełku jest \(50\) kuponów, wśród których jest \(15\) kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe A.\( \frac{15}{35} \) B.\( \frac{1}{50} \) C.\( \frac{15}{50} \) D.\( \frac{35}{50} \) DRozwiąż nierówność \(2x^2 - 3x \gt 5\).\(x \in (\infty , -1) \cup \biggl(2\frac{1}{2}, +\infty \biggl)\)Rozwiąż równanie \(\bigl(x^3 + 125 \bigl)\bigl(x^2 - 64\bigl) = 0\).\(x \epsilon \{-8, -5, 8\}\)Udowodnij, że dla dowolnych liczb dodatnich \(a\), \(b\) prawdziwa jest nierówność \(\frac{1}{2a} + \frac{1}{2b} \ge \frac{2}{a + b}\).Okręgi o środkach odpowiednio \(A\) i \(B\) są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku \(A\) jest równy \(2\). Uzasadnij, że promień okręgu o środku \(B\) jest mniejszy od \(\sqrt{2} - 1\).Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej \(x\) wzorem \(f(x) = a^x\) (gdzie \(a \gt 0\) i \(a \ne 1\)), należy punkt \(P = (2, 9)\). Oblicz \(a\) i zapisz zbiór wartości funkcji \(g\), określonej wzorem \(g(x) = f(x) - 2\).\(a = 3\), zbiór wartości: \((-2, +\infty )\)Dwunasty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n \ge 1\), jest równy \(30\), a suma jego dwunastu początkowych wyrazów jest równa \(162\). Oblicz pierwszy wyraz tego ciągu. \(a_1 = -3\)W układzie współrzędnych punkty \(A = (4,3)\) i \(B = (10, 5)\) są wierzchołkami trójkąta \(ABC\). Wierzchołek \(C\) leży na prostej o równaniu \(y = 2x + 3\). Oblicz współrzędne punktu \(C\), dla którego kąt \(ABC\) jest prosty. \(C = \biggl( 6\frac{2}{5}, 15\frac{4}{5}\biggl)\)Dane są dwa zbiory: \(A = \{100, 200, 300, 400, 500, 600, 700\}\) i \(B = \{10, 11, 12, 13, 14, 15, 16\}\). Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez \(3\). Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.\(P(A) = \frac{16}{49}\)Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe \(45\sqrt{3}\). Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa. \(a = 6\), \(H = \frac{3\sqrt{3}}{2}\), \(V = 40\frac{1}{2}\)
U kotów brytyjskich produkcja eumelaniny, czyli czarnego barwnika, jest modyfikowana przez trzy allele genu autosomalnego, które w zależności od układu, w jakim pojawiają się w genotypie kota, determinują kolor włosa: B – allel dominujący w stosunku do pozostałych, warunkujący barwę czarną, b – allel recesywny w stosunku do B, ale dominujący w stosunku do b1, warunkujący barwę czekoladową, b1 – allel recesywny zarówno w stosunku do B, jak i do b, warunkujący barwę cynamonową. Ekspresja genu odpowiedzialnego za produkcję eumelaniny modyfikowana jest przez autosomalny gen z innego chromosomu, którego allel D warunkuje równomierne rozproszenie barwnika, co daje normalną barwę włosa, natomiast recesywny allel d sprawia, że pigment występuje w skupiskach, co skutkuje rozjaśnieniem (rozmyciem) kolorów: czarnego – do niebieskiego, czekoladowego – do liliowego, a cynamonowego – do płowego. Na podstawie: (0–1) Zapisz, stosując podane oznaczenia alleli genów odpowiedzialnych za kolor sierści, wszystkie możliwe genotypy niebieskiego kota brytyjskiego. (0–1) Zapisz, stosując podane oznaczenia alleli genów, genotypy kotów brytyjskich: cynamonowej samicy i czarnego samca, w których potomstwie znajdują się kocięta czarne, czekoladowe, niebieskie oraz liliowe. Genotyp cynamonowej samicy: Genotyp czarnego samca: (0–2) Zapisz krzyżówkę genetyczną (szachownicę Punnetta) cynamonowej samicy i czarnego samca (rodziców z podpunktu 2.) i na podstawie tej krzyżówki określ prawdopodobieństwo, że kolejne kocię tych rodziców będzie niebieskie. Krzyżówka: Prawdopodobieństwo, że kolejne kocię będzie niebieskie:
matura maj 2018 zad 14